NETIS:特許取得 基礎工事のパイオニア

特殊基礎工事

第63号

新技術情報

平成 23 年 7 月

〒781-0014 高知県高知市薊野南町28番2号 [URL] http://www.ko-marutaka.co.jp

TEL 088-845-1510 FAX 088-846-2641 [Email] marutaka@ceres.ocn.ne.jp

東日本大震災による 津波避難タワー波力の見直し

最新の研究によると、大津波による衝撃波力は1平方メートル当たり200kNであると言われている。 従来の鉄骨造のH鋼コラム構造で建築された津波避難施設では、東日本大震災で引き起こされた津波 の衝撃波力に耐える事が出来ず、又、漂流物・テトラ・船舶・瓦礫等による衝撃も計算が必要とされる。 今後建設される津波避難タワーは、支柱に波が当る面積が少なく波の勢いが分散し易い鋼管杭を使い、 中に芯材を入れコンクリートを充填する事で漂流物による衝撃に耐え、強度をより強固に出来るような 構造とする必要がある。

津波避難タワー

安全性

住民が安全に避難でき、津波に対して十分な耐力を有する構造とする

(高齢者や身体障害者が安全に避難でき、2日程度一次避難が出来る施設) 津波による漂流物(船舶・テトラ等)に対する支柱補強 (支柱鋼管内に芯材・鉄筋・二重鋼管・コンクリート打設等による補強)

可変性

津波の想定高さが変更になった場合、高さ変更可能な支柱強度 外壁を張る事により、集会場や室内競技場に使用できる

経済性

プレハブ化による工費削減

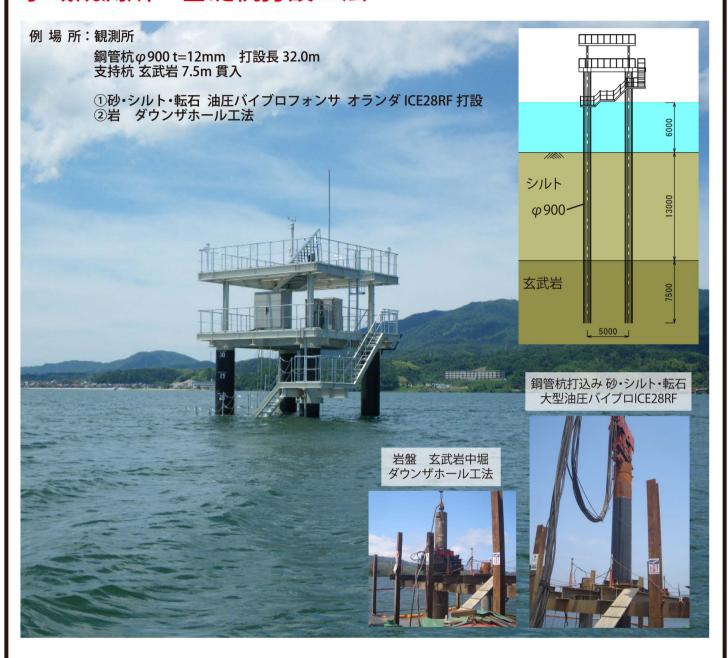
工場製作・仮組立による品質確保、現場施工を最小とすること による工費削減

住宅密集地に立地する条件を考慮し、大型重機を使用しない 工法の採用(上部一体化・ジャッキアップによる建設)

工期短縮

工場製作の割合を高め、現場作業の大幅削減による工期短縮 (ジャッキアップによる工期短縮)

構造計算


津波避難タワーの実施レベル基本設計と構造計算液状化と津波(漂流物を含む)に対する構造計算

高齢・障害者対応

登降施設を備える(手巻き式ゴンドラ設置)

水域観測所 基礎杭打設工法

衝撃波力に強い鋼管杭

島根県水域観測所 高波に耐える

愛媛県鹿野川ダム 仮桟橋 鋼管杭φ600 ダム放水に耐える

